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By resorting to measurements of physically characterizing observables of water samples
perturbed by the presence of Nafion and by iterative filtration processes, we discuss their
scale free, self-similar fractal properties. By use of algebraic methods, the isomorphism is
proved between such self-similarity features and the deformed coherent state formalism.
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1. Introduction

It has been shown recently1–4 that in the framework of the theory of entire ana-

lytical functions the algebra of deformed (squeezed) coherent states provides the
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functional realization of self-similarity properties of deterministic fractals. Such

a result has been obtained by using the quantum field theory (QFT) formalism

which describes topologically nontrivial “extended objects”, such as kinks, vor-

tices, monopoles, crystal dislocations, domain walls, and other so-called “defects”,

or macroscopic quantum systems, in condensed matter physics in terms of non-

homogeneous boson condensation5–7 and which has been tested to be successful

in explaining many experimental observations in superconductors, crystals, ferro-

magnets, etc.7 The observation8 of defects in the lattice of crystals (dislocations)

submitted to stress actions, such as the bending of the crystal at low temperature,

may also be framed in the QFT description of defect formation. In such case, de-

fects appear to be the effect of nonhomogeneous coherent phonon condensation.

Remarkably, these lattice defects exhibit self-similar fractal patterns and provide

an example of “emergence of fractal dislocation structures”8 in nonequilibrium dis-

sipative systems. These observations also provide an experimental support to the

above mentioned “theorem” on the isomorphism between the self-similar properties

of fractalsa,9,10 and the algebraic structure of deformed coherent states. Motivated

by such a scenario, our task in this paper is to show that such an isomorphism also

exists between the observed phenomenology11–14 of self-similar, scale free proper-

ties of water behavior in the specific conditions discussed below and the formalism

of deformed coherent states. Our discussion is limited to a general analysis based

on algebraic methods and aimed to account for the self-similarity properties. In

a subsequent paper, we will present a model on the dynamical molecular behav-

ior of water under the experimental condition specified below. A preliminary, brief

description of the model is anticipated in the Appendix B.

The experiments considered in this paper, published in Refs. 11–14, have been

motivated by those of the Pollack’s research group15–17 and are grounded on the

studies of the Elia’s group in the past couple of decades. We will summarize the

measurements in Sec. 2 and for the reader convenience we report full details of

the experimental protocol in Appendix A. The experiments essentially are aimed

to the measurements of physically characterizing observables of water samples per-

turbed by the presence of Nafion, a very hydrophilic polymer, and by filtration.

Pollack has indeed shown15–17 laboratory evidence that water in the presence of

Nafion acquires singular properties, such as, e.g., impenetrability by impurities in

a water stratum of ≈ 200 µm in proximity of the hydrophilic surface of Nafion.

As already mentioned, our discussion is limited essentially to the self-similarity

properties which appear from the log–log plots as a laboratory characterization of

all the measurements. Within such limits, without entering the specificity of the

molecular dynamics in terms of explicit dynamical modeling, we provide the proof

that the observed self-similarity phenomenology is mathematically isomorph to the

algebraic structure of deformed coherent states. As well-known, the isomorphism

aIn some sense self-similarity is considered to be the most important property of fractals (Ref. 9,
p. 150)

1450007-2
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between two systems or sets of elements does not mean “equality”, or analogy in

some generic terms, between the two systems. It has a mathematically well-defined

meaning, so that some difficult to study features or unknown properties of one of

the systems can be mapped, if an isomorphism has been found, to well-studied

features of the other system, for which a sound mathematical formalism has been

developed, thus moving from unexplored territories to more familiar ones, shar-

ing the same formal structure with the former ones. A remarkable example is the

Heisenberg discovery that nucleons share the same su(2) algebraic structure of the

spin quantum number, e.g. of the electron. This does not mean to propose the in-

terpretation of nucleons in terms of electrons. However, a new branch of physics,

i.e., nuclear physics, was born with the discovery of such an isomorphism (and the

nucleon isospin was discovered).

Our approach in the discussion presented in Sec. 2 is much similar to the one in

attempting to catch from the study of symmetry properties as much information

as possible, concerning some problem difficult to solve analytically and/or numeri-

cally (the extraordinary success of symmetry property studies in high energy physics

and condensed matter physics comes here to our minds). The non-negligible advan-

tage offered by such an approach (in our present case and in physics in general)

is that the conclusions one may reach do not depend on specific assumptions or

dynamical models. They are of general validity, not to be expected to decay with

a too short life-time implied sometimes by the heavy approximations which one

is forced to introduce in producing a molecular model or a numerical simulation.

For example, in the case of water studies, computational limits put strong con-

straints in modeling even moderate volumes of liquid water, e.g., V ≈ 100 nm3, by

introducing classical limiting assumptions on the water quantum molecular struc-

ture.18 The consequent effect is the one of averaging out fluctuations which may

turn out in the system collective behavior, such as, e.g., self-similarity.19 On the

other hand, it is of course necessary that in addition to the analysis of the gen-

eral structure of the phenomenon, an accurate model be formulated by resorting to

conventional methods, such as those provided by statistical mechanics and molec-

ular dynamics, able to describe the dynamics at work at a microscopic level. As

a matter of fact, studies along such a direction are on the way and, although the

discussion of a dynamical model is out of the scope of this paper, in Appendix B we

present some preliminary modeling on which we are working. Section 3 is devoted to

conclusions.

2. Phenomenology and Algebraic Method Analysis of Nafionized

and Filtered Water

Here our aim is limited to analyze by use of algebraic methods the common

self-similarity features appearing in the results of three sets of measurements on

water that has been put in contact with Nafion, called Iteratively Nafionized Wa-

ter (INW), and water that has been iteratively filtered (Iteratively Filtered Water

1450007-3
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(IFW)). We first describe these experimental results, published in Refs. 11–14, then

we present the algebraic method analysis of the common phenomenology of their

self-similarity properties.

From Pollack’s work,15–17 it is known that water in contact with Nafion mem-

branes presents peculiar behavior. We have measured the electrical conductivity

χ of INW. Nafion membranes of given surface and width are placed in a capsule

made either of glass or plastic in contact with 10–20 ml of pure water. As described

in the Appendix A, manual agitation is performed repeatedly so that the liquid

laps against the membrane. Then we follow the evolution of χ, that systemati-

cally increases. The procedure is repeated after turning over the membrane. That

is iterated for some tens of times, each invariably producing a growth of electrical

conductivity. At intervals of few hours, the membrane is removed from the capsule

and left to dry in air. It is then placed back in the nafionized water where it came

from, and previous steps (manual agitation, measurement of conductivity, removal

of the membrane from the capsule, etc.) are repeated again and again. The mea-

sured very high increase of electrical conductivity χ (two- or about three-orders

of magnitude) excludes that the phenomenology depends on the impurity release.

The impurity release must be rapidly reduced to a null contribute as in a normal

washing procedure. When the pH and conductivity were measured for samples that

had changed their physical–chemical parameters (pH and conductivity) due to ag-

ing (15 and 30 days of aging), the measured values lie on the linear trend at the

place corresponding to the new coordinates.11 In Fig. 1, we report the plot of the

logarithm of heat of mixing, Log(−Qmix), (with −Qmix > 0) of INW with NaOH

solution 0.01 m (mol kg−1) as a function of logarithm of the electrical conductivity

χ. The pH (−Log[H+]) of samples of INW as a function of Logχ is shown in Fig. 2.

All details on the measurement protocol are described in Appendix A.

Let us now consider the process of iteratively filtering a given volume of pure

liquid water. The liquid is first filtered in vacuum; the resultant filtrate is put

through the filtering step again; this filtration is repeated up to 250 times. It re-

sults12–14 that the qualitative effects on water are the same regardless of the filter

type, e.g., glass filter, disposable or ceramic filters. After filtration, electrical con-

ductivity increases by two-orders of magnitude, while density shows variations on

the fourth decimal digit. Approximately, 10–30% of the observed conductivity in-

creases can be attributed to impurities released by the glass filters. Therefore, we

paid careful attention to the impurities released by the glass filters. We found that

the main chemical impurities are derived from alkaline oxide (Na2O) released by

the glass. In contact with water, they transform into sodium hydroxide (NaOH) and

the last substance turns into sodium bicarbonate (NaHCO3) due to atmospheric

carbon dioxide (CO2). We therefore systematically determined the sodium con-

centration of the samples and subtracted the contribution of sodium bicarbonate

from the conductivity readings. The other components of the glass — SiO2, B2O3

and Al2O3 — are very low compared to sodium bicarbonate and they do not con-
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tribute significantly to electrical conductivity neither at low alkalinity of the water

medium, nor do they affect the density, due to their low concentration (see Table 1

of the second quoted paper in Refs. 13 and 14 for their quantitative measurements).

Moreover, the IFW conductivity is not altered by very weak acids, such as H4SiO4,

H3BO3 or by Al2O3, deriving from leaching from Pyrex glass filters, since they are

not dissociated in ions in low alkaline solutions, such as those of IFW, and thus

they do not contribute to electrical conductivity.13,14 We stress that using only

samples of pure water there was no possibility for contamination of the filters and

no extraneous chemical substances were introduced into the water other than those,

mentioned above, deriving from the partial dissolution of the glass solid support.

In Fig. 3, the logarithm of IFW density (ρ− ρ0) versus the logarithm of electrical

conductivity χ is reported. ρ0 is the density of pure untreated water.

The fitting by a straight line of the results of the measurements in Figs. 1–3

show that we are in the presence of a scale free, self-similar phenomenon in the three

cases. This result is reproducible by the use of a detailed experimental protocol

presented in Appendix A and to our knowledge it is not described by existing

conventional methods of statistical mechanics and molecular modeling. Therefore,

we first analyze the phenomenology by use of algebraic methods without proposing

any model of the dynamical molecular behavior. Then, in a future publication, we

will present a molecular model. Although this is beyond the scope of this paper,

nevertheless a preliminary description of a molecular model on which we are working

is anticipated in Appendix B.

Let us thus proceed in analyzing by algebraic methods the self-similarity (power

law) phenomenology of INW and IFW as described above (Figs. 1–3). The straight

Fig. 1. Logarithm of heat of mixing, Log(−Qmix), (with −Qmix > 0) of INW with a NaOH
solution 0.01 m (mol kg−1) as a function of logarithm of the electrical conductivity χ for INW.

Each point represented in the figure is obtained experimentally measuring the Qmix (J kg−1) and
the electrical conductivity χ, (µS cm−1) of each sample.11

1450007-5
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Fig. 2. The pH (−Log[H+]) of 120 samples of INW as a function of Log χ. Each point repre-
sented in the figure is obtained experimentally measuring the pH and the electrical conductivity
χ (µS cm−1) of each of the 120 samples.11

Fig. 3. Logarithm of IFW density (ρ−ρ0)×105 g cm−1, versus logarithm of electrical conductivity
χ (µS cm−1) for Pyrex glass and Millipore filters, irrespective to the number of filtration or the
filter porosity. Each point represented in the figure is obtained experimentally measuring the
density, ρ (g cm−1) and the electrical conductivity of each samples.12 ρ0 is the density of pure
Milli Q untreated water.

line fitting the data in each of Figs. 1–3 is generically represented by the equation

d =
Logα

Log β
, (2.1)

where the ordinate and the abscissa have been denoted by Logα and Log β, respec-

tively, with the specific meaning they assume in each of the figures and the reference

frame has been translated conveniently, so that the straight line crosses the zero in

each of the three cases (such a translation is equivalent to divide the ordinate (or

1450007-6
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multiply the abscissa) by t, with t = 10c, where c is the point intercepted by the

line on the abscissa axis). It is also understood that the angular coefficient d has

the proper ± sign in each of the three cases. In the following, it is convenient to

switch from common logarithms (to base 10) to the natural ones since the ratio d

in Eq. (2.1) does not depend on the chosen base. Equation (2.1) is equivalent to

un,q(α) ≡ (qα)n = 1 , for any n ∈ N+ , with q ≡ 1

βd
, (2.2)

where we have used the notation (qα)n ≡ un,q(α) and as customary N+ denotes

positive integers. The constancy of the angular coefficient d in the plot expresses the

scale free character of the relations among physical quantities represented in (each

of) the figures and, together with the independence of n of Eq. (2.1), it also expresses

their self-similarity properties, namely the ratio d = lnα/ lnβ is independent of the

order n of the power to which α and β are simultaneously elevated. Notice that

self-similarity is properly defined only in the n→ ∞ limit.

The above remarks are the ones which are done in the standard analysis of

fractal structures.10 As already observed in Sec. 1 (see footnote a), self-similarity is

considered to be the most important property of fractals.9 The angular coefficient d

in the Figs. 1–3 is called the self-similarity dimension, or also the fractal dimension.9

Now, the functions un,q(α) in Eq. (2.2), representing, for any n ∈ N+, the nth

power component of the self-similarity relation (the nth stage of the fractal), are

readily recognized to be, apart of the normalization factor 1/
√
n!, nothing but the

restriction to real qα of the entire analytic functions in the complex α-plane

ũn,q(α) =
(qα)n√
n!

, n ∈ N+ . (2.3)

They form in the space F of the entire analytic functions a basis which is orthonor-

mal under the Gaussian measure dµ(qα) = (1/π)e−|qα|2dqαdqα. The factor 1/
√
n!

ensures the normalization condition with respect to the Gaussian measure. This

means that, to the extent in which fractals are considered under the point of view

of self-similarity, the study of the fractal properties may be carried on in the space

F of the entire analytic functions, by restricting, at the end, the conclusions to real

qα, qα → Re(qα).2,3 In other words, a mathematical isomorphism is recognized to

exist between the observed self-similarity properties (Figs. 1, 2 and 3) and the de-

formed coherent states. In order to prove this, by closely following Ref. 1, we remark

that F is the vector space providing the representation of the Weyl–Heisenberg al-

gebra of elements {a, a†, 1} with number operator N = a†a.20,21 F is in fact the

Fock–Bargmann representation22,23 (FBR) of the (Glauber) coherent states with

identification:

N → α
d

dα
, a† → α , a→ d

dα
. (2.4)

In explicit terms, we recall2,3 that FBR is the Hilbert space K generated by the

basis ũn(α) ≡ ũn,q(α)|q=1, i.e., the space F of entire analytic functions. A one-to-

one correspondence exists between any vector |ψ〉 in K and a function ψ(α) ∈ F .

1450007-7
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The vector |ψ〉 is then described by the set {cn; cn ∈ C,∑∞
n=0 |cn|2 = 1} defined by

its expansion in the complete orthonormal set of eigenkets {|n〉} of N :

|ψ〉 =
∞
∑

n=0

cn|n〉 → ψ(α) =

∞
∑

n=0

cnũn(α) , (2.5)

〈ψ|ψ〉 =
∞
∑

n=0

|cn|2 =

∫

|ψ(α)|2dµ(α) = ‖ψ‖2 = 1 , (2.6)

|n〉 = 1√
n!
(a†)n|0〉 , (2.7)

where |0〉 denotes the vacuum vector, a|0〉 = 0, 〈0|0〉 = 1. The condition
∑∞

n=0 |cn|2 = 1 [cf. Eq. (2.6)] ensures that the series expressing ψ(α) in Eq. (2.5)

converges uniformly in any compact domain of the α-plane, confirming that ψ(α)

is an entire analytic function, indeed. The explicit expression of the (Glauber) co-

herent state |α〉 is20,21

|α〉 = exp

(

−|α|2
2

) ∞
∑

n=0

αn

√
n!
|n〉 . (2.8)

It is convenient now to put q = eζ , ζ ∈ C. The q-deformed algebraic structure

is obtained then by introducing the finite difference operator Dq, also called the q-

derivative operator. For brevity we do not comment more on this point, see Refs. 24–

30 for details. Then, one can show24–26 that the q-deformed coherent state |qα〉 is
obtained by applying qN to |α〉

qN |α〉 = |qα〉 = exp

(

−|qα|2
2

) ∞
∑

n=0

(qα)n√
n!

|n〉 . (2.9)

As observed in Refs. 1–4, the nth power component un,q(α) of the (fractal) self-

similarity Eq. (2.2) is “seen” by applying (a)n to |qα〉 and restricting to real qα

〈qα|(a)n|qα〉 = (qα)n = un,q(α) , qα → Re(qα) . (2.10)

In other words, the operator (a)n acts as a “magnifying lens”2,3,10 whose application

picks up the nth component of the q-deformed coherent state series representing

the nth power component un,q(α).

Thus, as a result, we have formally established the one-to-one correspondence

between the nth power component un,q(α) (the nth fractal stage of iteration), with

n = 0, 1, 2, . . . ,∞, and the nth term in the q-deformed coherent state series. The

operator qN applied to |α〉 “produces” the fractal in the functional form of the

coherent state |qα〉 and therefore it has been called the fractal operator.2,3 Note

that |qα〉 is actually a squeezed coherent state24–26,31 with ζ = ln q the squeezing

parameter. Thus, qN acts in F as the squeezing operator. The proof of the iso-

morphism between self-similarity properties of the observed phenomenology and

the q-deformed algebra of the squeezed coherent states is formally provided by

1450007-8
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Eqs. (2.9) and (2.10).1–3 As already said, in a future work we will complement the

present result obtained by use of algebraic methods with the formulation of a model

of the molecular dynamics. See Appendix B for its brief, preliminary presentation.

3. Conclusions

The conclusion of our discussion is that an isomorphism exists between the ob-

served scale free, self-similar properties of INW and IFW and the deformed coherent

state formalism. The fractal dimension d has been shown to be related to the q-

deformation parameter,1–3 to squeezing and dissipation.24–26 The relation between

d, q and the squeezing parameter ζ is given by −d lnβ = ln q = ζ [cf. Eq. (2.2)].

There are however further questions which need to be asked in order to make our

analysis more complete and to make it more clear. Among them, the most urgent

is perhaps the one related with the identification of the system variables involved

in the formation of the coherent states and of their deformation. It might be thus

helpful to introduce some clarification for each of the measurements discussed above.

Let us start with the case of Fig. 2. In this case, the system variable involved in

coherence is the (proton) charge density distribution (represented in terms of pH)

and it is “deformed” by its interaction with the Nafion surface.b We may write the

(proton) charge density wavefunction σ(r, t) as

σ(r, t) =
√

ρ(r, t) eiθ(r,t) , (3.1)

with real ρ(r, t) and θ(r, t). The Nafion action is responsible of the spontaneous

breakdown of the system U(1) symmetry and nonvanishing |σ(r, t)|2 = ρ(r, t) de-

notes the expectation value of the charge density operator in the system ground

state. One may show5,6,32,33 that θ(r, t) represents the Nambu–Goldstone (NG)

field and that the (space component of the) current is given by

J(r, t) =
1

m
ρ(r, t)(∇θ(r, t)− qA(r, t)). (3.2)

where A denotes the electromagnetic (e.m.) vector field. On the other hand, the

current density is also defined to be proportional to the conductivity χ. This and

Eq. (3.2) gives the relation between ρ and χ. The experiment shows that as an

effect of the presence of the Nafion, the conductivity changes. We then assume

that χ → χ′ = eζχ with ζ a small (ζ < 1) deformation parameter. It is then easy

to show that the linearity and the coherent state properties lead to the plot of

Fig. 2. The fitting is indeed obtained by tuning the deformation parameter such

that ζ = δ lnχ, with 1 + δ = d. The fractal dimension d thus provides a measure

of such a dynamical “deformation”, so that the observed scale free law relating pH

bIndeed Pollack’s EZ water is observed15–17 to be arranged in ordered (coherent state) patterns
and pH measurements show a peculiar gradient of the proton concentration (orthogonal to the
Nafion surface in the geometry of Pollack’s experiments15–17).
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and conductivity appear to be the macroscopic manifestations of dissipative local

deformations at a microscopic level.

In Fig. 3, the underlying molecular dynamics of IFW manifests itself in the labo-

ratory observations in terms of the molecular density variations ρ−ρ0 as a function

of the electrical conductivity with self-similarity properties. This means that the

filtering process to which water has been undergoing in the described experimen-

tal protocol produces molecular rearrangements and displacements. As well-known

from the study of many-body ordered pattern formation (e.g., as in crystal for-

mation), density behaves as an order parameter and condensation of long range

correlation modes is responsible of the dynamical occurrence of coherent states5

(for a formal treatment in a specific model, see Appendix B and the comments

between Eqs. (B.11) and (B.12) and between Eqs. (B.13) and (B.14)). By following

a derivation similar to the one presented above for Fig. 2, the variations in the

system density (nonhomogeneous condensation) are related to the concurrent vari-

ations of the conductivity in the squeezing process characterized by the scale free

exponent d.

Finally, Fig. 1 gives for INW the exchanges of mixing heat, Qmix, in function

of the conductivity at constant pressure and temperature fixed at 25.00◦C± 0.001.

Since T∆S = ∆Q, with S denoting the entropy, measurement of heat exchange

provides the entropy variations in the water molecular configurations as an effect of

the nafionization. In such case, the coherent state is of thermal origin, as it is ob-

tained for example in the thermo field dynamics (TFD) formalism.5 We have then

a two-mode SU(1, 1) coherent state representation related to dissipative (thermal)

processes and we can show5,6,24–26 that minimization of the free energy F , dF = 0,

gives, at constant pressure and temperature, dE =
∑

k EkṄkdt = TdS, where

Ṅk denotes time derivative of the long range correlation modes (the NG modes).

This equation specifically shows that heat exchange is related to variations of long

range correlations out of which molecular coherent patterns emerge. Thus, again

we have coherent state deformations (squeezing). The scale free power law relating

heat exchanges and the conductivity changes is then obtained. Summing up, in the

present case the self-similarity properties observed in the experiments reflect the

self-similarity properties of the SU(1, 1) thermal states. In this connection, we ob-

serve that a SU(1, 1) coherent state representation related to dissipative processes

can also be exhibited1 where the notion of topologically nontrivial dissipative phase

is introduced and the dynamics is characterized by noncommutative geometry in the

plane. Here, we omit details on these last issues since they are out of the tasks of this

paper. We only remark that a number of specific characterizations of the molecular

coherent dynamics can be derived by the above discussed laboratory observations

and their understanding in terms of coherent state self-similar properties. Perhaps,

of general interest is the possibility, suggested by our approach, of “extracting re-

liable information from noisy experiments”,c such as those described in this paper.

cWe are grateful to the anonymous referee for such an observation.

1450007-10



January 16, 2014 14:2 WSPC/Guidelines-IJMPB S0217979214500076

Self-Similarity Properties of Nafionized and Filtered Water

This leads us to one further observation, namely that in the above discussion coher-

ent state formation coexists with noncoherent molecular dynamics, so that one has

a two-component system (the coherent and the non-coherent component), with con-

tinual migration of molecules from the coherent component to the noncoherent one

and vice-versa in an overall stationary regime at fixed temperature. Recent experi-

mental observation points, indeed, to the existence of a two-component structure of

water from ambient temperature to supercooled conditions34 (see also Refs. 35–38,

40).

In order to analyze the self-similarity phenomenology in terms of a specific

molecular dynamics, we need to consider an explicit dynamical model, thus going

beyond the limits of the algebraic method analysis to which this paper is devoted.

Preliminary results of the dynamical analysis are presented in Appendix B. In our

model, the molecule dynamics is assumed to be ruled by the interaction of the

molecule electrical dipole moment of magnitude D with the radiative e.m. field,

thus disregarding the static dipole–dipole interaction. The N molecule system is

collectively described by the properly normalized complex dipole wave field χ(x, t)

and, by resorting to the analysis of Refs. 39 and 40, we restrict ourselves to the

resonant radiative e.m. modes with k = 2π/λ ≡ ω0. The field equations are41,42:

i
∂χ(x, t)

∂t
=

L2

2I
χ(x, t)

− i
∑

k,r

D
√
ρ

√

k

2
(ǫr · x)[ur(k, t)e−ikt − u†r(k, t)e

ikt]χ(x, t) ,

i
∂ur(k, t)

∂t
= iD

√
ρ
√

k
2 e

ikt

∫

dΩ(ǫr · x)|χ(x, t)|2 ,

(3.3)

where ur(k, t) denotes the radiative e.m. field operator with polarization r, ρ ≡
N/V , V is the volume and ǫr is the polarization vector of the e.m. mode, for which

the condition k · ǫr = 0 is assumed to hold. We use natural units ~ = 1 = c and

the dipole approximation exp(ik · x) ≈ 1. We have ω0 ≡ 1/I, where I denotes the

moment of inertia of the molecule; L2 is the squared angular momentum operator.

The system of N water molecules is assumed to be spatially homogeneous and in

a thermal bath kept at a nonvanishing temperature T . For further details on the

model see the Appendix B. Preliminary results seem to suggest that the observed

self-similarity may occur.

Appendix A. The Experimental Protocol

For the reader convenience, we present here the details of the protocol of three sets

of measurements on water under two different physical treatments11–14: water that

has been put in contact with Nafion, that we call INW and water that has been

iteratively filtered (IFW).

Background and procedure for INW. In order to prepare some water perturbed

by the presence of Nafion INW, we followed these steps:
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• Step 1. Initially, the pristine membrane is washed five times using 20 ml of “ultra-

pure” (Milli QTM) water.

• Step 2. Nafion membranes with a surface of 60–120 cm2 and a width of 50–

180 µm, were placed in a Petri capsule (made either of Pyrex glass or plas-

tic) in contact with 10–20 ml of Milli Q water (electrical conductivity χ =

1 − 2 µS cm−1). Manual agitation is performed repeatedly so that the liquid

laps against the membrane. Then we follow the evolution of χ (µS cm−1), that

systematically increases. The procedure is repeated after turning over the mem-

brane. That is iterated for some tens of times, each invariably producing a growth

of electrical conductivity.

• Step 3. At intervals of few hours, (from 3 to 12) the membrane is removed from

the Petri capsule and left to dry in air (1–24 h). It is then placed back in the

nafionized water it came from, and steps 2 and 3 are repeated again.

To obtain a sufficiently high conductivity, i.e., 50–100 µS cm−1, about 10–20

iterations of the last two steps are needed. Even though successive iterations invari-

ably determine a growth of electrical conductivity, it has not yet been possible to

link quantitatively the number of iterations with the increment of χ. Intuitively, the

procedure is akin to a sort of “washing”, iterated hundreds of times. The measured

continuous increase of conductivity is such that it is not consistent with the hy-

pothesis of impurity release. In fact, the phenomenology takes places independently

of the number of steps 2 and 3 of the protocol or of whether the membrane is a

pristine one. Membranes used for prolonged periods (months) and for hundreds of

steps 2 and 3 behave just like as a new membrane, namely the conductivity always

increases at increasing number of steps. It appears, though, that this capability

improves with the use of the membrane. In any case if the liquid obtained is com-

pletely consumed for experimental measures, and we begin a new procedure using

the same membrane with pure water (10–30 ml) the conductivity increases but does

not start at the value obtained in the previous procedure. Because the high number

of steps 2 or 3 and the very high increase of electrical conductivity χ (two or about

three orders of magnitude), we can exclude that the phenomenology depends on the

impurity release. The impurity release must be rapidly reduced to a null contribute

as in a normal washing procedure. Notice that the measures of physical–chemical

parameters here reported are obtained after the removal of Nafion membrane from

the liquid water. In such a way, we obtain information on the effect induced by

Nafion on water.

Moreover, we have tested the effect of aging on the samples and we found that

when the pH and conductivity are measured for samples that had changed their

physical–chemical parameters (pH and conductivity) due to aging over 15 and 30

days, the measured values lie on the linear trend at the place corresponding to the

new coordinates. The results for samples aged in polyethylene or polypropylene

containers are reported in Table 1 in Ref. 11, from which one can see that after

30 days from the sample preparation there is an increase in the conductivity for
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the majority of the samples, stability in several of them and a strong decrement

in one sample. It has been observed also that if the aging is performed in presence

of small quantity of Nafion membranes, the variation of conductivity with time is

practically reduced to zero.11

Background and procedure for IFW. The process of iteratively filtering a given

volume (1–10 ml) of Milli Q water consists in: filtering the liquid in vacuum; taking

the resultant filtrate and putting it through the filtering step again; repeating this

filtration up to 250 times. The following filters were used: Millipore filters made of

cellulose nitrate, with porosities of 450, 200, 100 and 25 nm and Pyrex glass filters

having mean porosity of 120, 65, 27.5, 10 and 2.5 µm. One observes12–14 that, re-

gardless of the filter type, e.g., Pyrex glass filter (Büchner), disposable Millipore or

ceramic filters, the qualitative effects on water are the same. Upon examining the re-

peatability of the phenomenon, we decided to first use Pyrex glass filters (Büchner).

We paid careful attention to the impurities released by the glass filters which might

affect electrical conductivity and density. The main chemical impurities that we

found are derived from alkaline oxide (Na2O) released by the glass. In contact with

water, they transform into sodium hydroxide (NaOH) and the last substance, due to

atmospheric carbon dioxide (CO2), turns into sodium bicarbonate (NaHCO3). We

therefore systematically determined the sodium concentration of the samples, and

subtracted the contribution of sodium bicarbonate from the conductivity readings.

The concentrations of impurities deriving from the other components of the glass

— SiO2, B2O3 and Al2O3 — are very low compared to sodium bicarbonate (for

numerical values of measured concentrations see Table 1 of the second quoted paper

in Refs. 13 and 14). We stress that the IFW conductivity is not altered by very

weak acids such as H4SiO4, H3BO3, or by Al2O3, derived from leaching of Pyrex

glass filters, since they are not dissociated in ions in low alkaline solutions, such as

those of IFW, and thus they do not contribute to electrical conductivity.13,14

Using Millipore filters for the iterative vacuum filtration process requires use of

a sintered glass filter as support. It is observed13,14 that, after filtration, electrical

conductivity increases by two-orders of magnitude, while density shows variations

on the fourth decimal digit. Approximately 10–30% of the observed increases can

be attributed to impurities released by the glass filters. At the porosity of Pirex

glass filters (R1, mean porosity 120 µm) used as a solid support for the Millipore

membrane filter, the contribution to electrical conductivity is so light that its effect

does not need to be taken into account. To exclude the contribution of chemical

impurities from inside the Millipore filters, they were rinsed with abundant water

until they produced a filtrate with electrical conductivity of 1.2–2.0 µS cm−1. This

procedure is equivalent or better than the sometimes suggested soaking. In fact

soaking tends to diminishes the release of impurities, while our goal is to remove

all the impurities of electrolyte nature that can increase the electrical conductivity.

After rinsing, we can be sure that all the soluble impurities were removed from the

filters. We found that the quantitative reproducibility was improved by rinsing the

filter with Milli Q water after each iterative filtration step, rather than replacing
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the filter with a new one. It is in fact worth repeating that during the experiment

no extraneous chemical substances were introduced into the water other than those

deriving from the partial dissolution of the glass solid support. In other words,

there was no possibility for contamination of the filters when using only samples of

Milli Q water.

Electrical conductivity measurements. Systematic measurements of specific elec-

trical conductivity were performed on the samples (INW and IFW), using an YSI

3200 conductometer with an electrical conductivity cell constant of 1.0 cm−1. Be-

fore measuring the electrical conductivity of a sample, the cell was calibrated by

determining the cell constant K (cm−1). The specific conductivity χ (µS cm−1)

was then obtained as the product of the cell constant and the conductivity of the

solution. For a given conductivity measuring cell, the cell constant was determined

by measuring the conductivity of a KCl solution having a specific conductivity

known to high accuracy, at several concentrations and temperatures. All electrical

conductivities were temperature-corrected to 25◦C, using a pre-stored temperature

compensation for pure water.

Calorimetry. The heat of mixing, Qmix (−Qmix > 0), of NaOH solution with

IFW samples was monitored using a Thermal Activity Monitor (TAM) model 2227,

by Thermometric (Sweden) equipped with a flow mixing vessel. A P3 peristaltic

pump (by Pharmacia) envoys the solutions (of the solutions of NaOH and of the

samples of IFW) into the calorimeter, through Teflon tubes. The flow rates of the

two liquids are the same, and are constant in the inlet tubes, so that the solution

coming out of the calorimeter has a concentration half the initial one. The mass

flow-rate, constant within 1%, amounts to 3 × 10−3 g s−1: it was the same for all

the experiments. The values of the mixing enthalpies, ∆Hmix, were obtained using

the following formula:

∆Hmix

(

mi
x,m

i
y → mf

x,m
f
y =

dQ

dt
Pw

)

, (A.1)

where (dQ/dt) is the heat flux (W ), Pw is the total mass flow-rate of the solvent

(kg s−1) and mi
x, m

i
y and mf

x, m
f
y , are the initial and final molalities. ∆Hmix is

given in J kg−1 of solvent in the final solution. For our control, our Qmix represents

the difference between the heat of mixing of NaOH solution with the samples of

IFW or INW, minus the one with pure untreated Milli Q water (heat of dilution of

NaOH solution).

Density measurements. The solution densities were measured using a vibrating-

tube digital density meter (model DMA 5000 by Anton Paar, Austria) with a pre-

cision of ±1×10−6 g cm−3 and an accuracy of ±5×10−6 g cm−3. The temperature

of the water around the densitometer cell was controlled to ±0.001 K. The densit-

ometer was calibrated periodically with dry air and pure water. As a control for

our measurements, we use the difference ρ− ρ0 between the density of the samples

minus the density of pure untreated Milli Q water.
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pH measurements. The pH were monitored using a pH-meter model micropH

2002 by Crison, equipped with a pH electrode for micro-samples, model 5209. The

electrode specification is: asymmetry potential <±15 mV, pH sensitivity 4–7 (at

25◦C) >98%.

Results. The results of the measurements of heat of mixing and pH for INW

and density for IFW in function of the electrical conductivity are reported in the

log–log plots in Figs. 1–3, respectively. Their fitting by a straight line shows that

we are in the presence of a scale free, self-similar phenomenon in the three cases.

Appendix B. Molecular Dynamical Model. Preliminary Analysis

We present a preliminary analysis of the water molecular dynamical model described

by Eqs. (3.3). Since, as observed at the end of Sec. 3, the molecule density is assumed

to be spatially uniform, the only relevant variables are the angular ones. In full

generality, we may expand the field χ(x, t) in the unit sphere in terms of spherical

harmonics: χ(x, t) =
∑

l,m αl,m(t)Y m
l (θ, φ). By setting αl,m(t) = 0 for l 6= 0, 1, this

reduces to the expansion in the four levels (l,m) = (0, 0) and (1,m),m = 0,±1. The

populations of these levels are given by N |αl,m(t)|2 and at thermal equilibrium, in

the absence of interaction, they follow the Boltzmann distribution. The three levels

(1,m), m = 0,±1 are in the average equally populated under normal conditions

and we can safely write
∑

m |α1,m(t)|2 = 3|a1(t)|2, with normalization condition

|α0,0(t)|2 +
∑

m |α1,m(t)|2 = 1. The system is invariant under (molecular) dipole

rotations, which means that the amplitude of α1,m(t) does not depend on m, and

that the time average of the polarization Pn along any direction n must vanish in

such conditions. It is useful to write39

α0,0(t) ≡ a0(t) ≡ A0(t)e
iδ0(t) ,

α1,m(t) ≡ A1(t)e
iδ1,m(t)e−iω0t ≡ a1,m(t)e−iω0t ,

um(t) ≡ U(t)eiϕm(t) ,

(B.1)

where a1,m(t) ≡ A1(t)e
iδ1,m(t). A0(t), A1(t), U(t), δ0(t), δ1,m(t) and ϕm(t) are real

quantities.

Due to the rotational invariance, the rate of change of the population in each

of the levels (1,m), m = 0,±1, equally contributes, in the average, to the rate of

change in the population of the level (0, 0), at each time t. In full generality, we can

set the initial conditions at t = 0 as

|a0(0)|2 = cos2 θ0 , |a1(0)|2 =
1

3
sin2 θ0 , 0 < θ0 <

π

2
, (B.2)

|u(0)|2 = 0 . (B.3)

By properly tuning the parameter θ0, in its range of definition one can adequately

describe the physical initial conditions (e.g., θ0 = π/3 describes the equipartition

of the field modes of energy E(k) among the four levels (0, 0) and (1,m), |a0(0)|2 ≃
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|a1,m(0)|2, m = 0,±1, as typically given by the Boltzmann distribution when the

temperature T is high enough, kBT ≫ E(k)). The values zero and π/2 are excluded

since they correspond to the physically unrealistic conditions for the state (0,0) of

being completely filled or completely empty, respectively.

From Eqs. (3.3) one may study the ground state of the system for each of the

modes a0(t), a1(t) and u(t). Without reporting the details of the derivation one

finds in the mean-field approximation39:

ä0(t) = 4Ω2γ20(θ0)a0(t)− 4Ω2|a0(t)|2a0(t) , (B.4)

ä1(t) = −σ2a1(t) + 12Ω2|a1(t)|2a1(t) , (B.5)

ü(t) = −µ2u(t)− 6Ω2|u(t)|2u(t) , (B.6)

respectively, where γ20(θ0) ≡ (1/2)(1 + cos2 θ0), σ
2 = 2Ω2(1 + sin2 θ0) and µ2 =

2Ω2 cos 2θ0, with Ω ≡ (2D/
√
3)
√

ρ/2ω0 ω0. We see that Eq. (B.4) can be written

in the form

ä0(t) = − δ

δa∗0
V0[a0(t), a

∗
0(t)] , (B.7)

where the potential V0[a0(t), a
∗
0(t)] is

V0[a0(t), a
∗
0(t)] = 2Ω2(|a0(t)|2 − γ20(θ0))

2 . (B.8)

Similarly, the potentials from which the right-hand side of Eqs. (B.5) and (B.6) are

derivable are

V1[a1(t), a
∗
1(t)] = σ2|a1(t)|2 − 6Ω2(|a1(t)|2)2 , (B.9)

Vu[u(t), u
∗(t)] = 3Ω2(|u(t)|2 + 1

3
cos 2θ0)

2 , (B.10)

respectively. As usual, in order to study the ground state of the theory, we search for

the minima of the potentials V . For V0, let a0,R(t) and a0,I(t) denote the real and

the imaginary component, respectively, of a0(t): |a0(t)|2 = A2
0(t) = a20,R(t)+a

2
0,I(t).

One finds a relative maximum of V0 at a0 = 0 and a (continuum) set of minima

given by the points on the circle of squared radius γ20(θ0) in the (a0,R(t), a0,I(t))

plane:

|a0(t)|2 =
1

2
(1 + cos2 θ0) = γ20(θ0) , (B.11)

We are thus in the familiar case where the cylindrical SO(2) symmetry (the phase

symmetry) around an axis orthogonal to the plane (a0,R(t), a0,I(t)) is spontaneously

broken. The points on the circle represent (infinitely many) possible vacua for the

system and they transform into each other under shifts of the field δ0: δ0 → δ0 + α

(SO(2) rotations in the (a0,R(t), a0,I(t)) plane). The phase symmetry is broken

when one specific ground state is singled out by fixing the value of the δ0 field. As

usual,43 we transform to new fields: A0(t) → A′
0(t) ≡ A0(t) − γ0(θ0) and δ′0(t) →

δ0(t), so that A′
0(t) = 0 in the ground state for which A0(t) = γ0(θ0). Use of these
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new variables in V0 shows that the amplitude A′
0(t) describes a (massive) mode with

pulsation m0 = 2ω
√

(1 + cos2 θ0) and that the field δ′0(t) corresponds to a zero-

frequency (massless) mode playing the rôle of the so-called NG collective mode,

implied by the spontaneous breakdown of symmetry. Our assumption is that the

perturbations to the water molecular dynamics induced by iterated interaction with

the highly hydrophilic Nafion polymers and the iterated filtration processes are the

responsible for the breakdown of the symmetry described in our dynamical molecular

model.

The value a0 = 0, which we have excluded in our initial conditions, cf. Eq. (B.2),

on the basis of physical considerations, consistently appears to be the relative maxi-

mum for the potential, and therefore an instability point out of which the perturbed

system runs away. One can also show that |u(t)|2 = (2/3)(|a0(t)|2 − cos2 θ0), which

implies that |u(t)| moves away from its vanishing value at t = 0 (the initial condi-

tion Eq. (B.3)) as soon as |a0(t)| reaches its minima on the circle or squared radius

γ20(θ0), considering that θ0 6= 0,±π, etc. as indeed it is since 0 < θ0 < π/2.

As well-known, the generator of the transformation δ0 → δ0+α is the generator

of coherent states5,6,20: the infinitely many unitarily inequivalent (i.e., physically

inequivalent) vacua, among themselves related by such a transformation, are coher-

ent condensates of the NG modes δ0. The family of such coherent states includes

squeezed coherent states5,6,20 parametrized by the q-deformation (or squeezing)

parameter through the (“form”) factors (qα)n, for any integer n, thus susceptible

to be represented by a straight line in a log–log plot, which is the wanted self-

similarity resulting from the (perturbed) dynamical interaction between molecules

and radiative e.m. field.

In the case of V1, a1 = 0 is a relative minimum and a set of relative maxima is

on the circle of squared radius

|a1(t)|2 =
1

6
(1 + sin2 θ0) ≡ γ21(θ0) . (B.12)

For |a1(t)|2 = γ21(θ0), U
2 = −(1/3) cos2 θ0 < 0, which is not acceptable since U is

real. Thus, the amplitude A1 cannot assume the values on the circle of radius γ1(θ0),

which is consistent with the intrinsic instability of the excited levels (1,m). One can

also show that the conservation laws in the model (here not reported for brevity)

and the reality condition for U require that |a1(t)|2 ≤ (1/3) sin2 θ0 which lies indeed

below γ21(θ0), and the value (1/6) sin2 θ0 taken by A2
1 when |a0(t)|2 = γ20(θ0) also

lies below the bound. The potential V1 thus must be lower than (1/3) sin2 θ. These

observations show that the consistency between Eqs. (B.4) and (B.5) is satisfied and

the field a1(t) described by Eq. (B.5) is a massive field with (real) mass (pulsation)

σ2 = 2Ω2(1 + sin2 θ0).

For Vu, we see that µ2 ≥ 0 for θ0 ≤ π/4 and the only minimum is at u0 = 0.

This solution describes the system when the initial condition, Eq. (B.3), holds at

any time. However, as mentioned above this is not consistent with the dynami-

cal evolution of the system moving away from the initial conditions exhibited by
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Eq. (B.4). Consistency is recovered provided θ0 > π/4. Then, µ2 = 2Ω2 cos 2θ0 < 0

and a relative maximum of the potential is at u0 = 0. A set of minima is given by

the points of the circle of nonvanishing squared radius v2(θ0) in the (uR(t), uI(t))

plane:

|u(t)|2 = −1

3
cos 2θ0 = − µ2

6Ω2
≡ v2(θ0) , θ0 >

π

4
. (B.13)

These minima represent (infinitely many) possible vacua for the system and they

transform into each other under shifts of the field ϕ: ϕ→ ϕ+α. The phase symmetry

is broken when one specific ground state is singled out by fixing the value of the

ϕ field. The fact that u0 = 0 is now maximum for the potential means that the

system evolves away from it, consistently with the similar situation for the a0 mode.

The symmetric solution at u0 = 0 is thus excluded for internal consistency and the

lower bound π/4 for θ0 guarantees dynamical self-consistency.

We transform now to new fields: U(t) → U ′(t) ≡ U(t)− v(θ0) and ϕ
′(t) → ϕ(t)

and we find that U ′(t) describes a “massive” mode with real mass
√

2|µ2| =

2Ω
√

| cos 2θ0| (a quasi-periodic mode), as indeed expected according to the

Anderson–Higgs–Kibble mechanism,5,6,44–46 and that ϕ′(t) is a zero-frequencymode

(a massless mode), also called the “phason” field.47 ϕ′(t) plays the rôle of the NG

collective mode. Again, as in the case of the V0 potential, the generator of the trans-

formation ϕ(t) → ϕ(t) + α is the generator of coherent states5,6,20: the infinitely

many unitarily inequivalent vacua are coherent condensates of the NG modes ϕ(t),

whose family includes q-deformed (squeezed) coherent states,5,6,20 also they are

susceptible to be represented by a straight line in a log–log plot and thus lead-

ing us again to the wanted self-similarity resulting from the (perturbed) molecular

dynamics.

As a further step, one can show39 that, provided θ0 > π/4, which we assume

our system is forced to reach under the Nafion and filtering perturbing effects,

U̇(t) = 2ΩA0(t)A1(t) cosα(t) , (B.14)

ϕ̇(t) = 2Ω
A0(t)A1(t)

U(t)
sinα(t) , (B.15)

where α ≡ δ1(t)− δ0(t)− ϕ(t). We thus see that U̇(t) = 0, i.e., a time-independent

amplitude Ū = const. exists, if and only if the phase locking relation

α = δ1(t)− δ0(t)− ϕ(t) =
π

2
, (B.16)

holds. In such a case, ϕ̇(t) = δ̇1(t)− δ̇0(t) = ω: any change in time of the difference

between the phases of the amplitudes a1(t) and a0(t) is compensated by the change

of the phase of the e.m. field. The phase locking relation (B.16) expresses nothing

but the gauge invariance of the theory. Since δ0 and ϕ are the NGmodes, Eqs. (B.16)

also exhibit the coherent feature of the collective dynamical regime, the “in phase

locked” dynamics of δ0 and ϕ coherent condensates, resulting in definitive in the in
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phase coherence between the system of N dipoles and of the e.m. radiative field. In

such a regime we also have Ā2
0 − Ā2

1 6= 0 to be compared with A2
0(t)−A2

1(t) ≈ 0 at

the thermal equilibrium in the absence of the collective coherent dynamics.

A final remark concern the finite temperature effects which have not been con-

sidered in the above discussion. Also on such a problem we will focus our study

in the planned developments. Here we observe that the
√
N (appearing in

√
ρ) in

Eqs. (3.3) signals strong coupling, namely for large N the interaction time scale is

much shorter (by the factor 1/
√
N) than typical short range interactions among

molecules. Thus, for large N the collective interaction is expected to be protected

against thermal fluctuations.

Further work is still necessary and some aspects of the model may need much

refinement. As said in the text, the discussion of such a model is out of the scope

of this paper. This Appendix is only the anticipation of a preliminary, rudimentary

modeling whose final version will be published in a forthcoming paper. There we

will also consider the specific spectral analysis on the line of the quantitative results

presented in Ref. 40.
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